Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.

نویسندگان

  • A Just
  • H Ehmke
  • L Toktomambetova
  • H R Kirchheim
چکیده

The time course of the autoregulatory response of renal blood flow (RBF) to a step increase in renal arterial pressure (RAP) was studied in conscious dogs. After RAP was reduced to 50 mmHg for 60 s, renal vascular resistance (RVR) decreased by 50%. When RAP was suddenly increased again, RVR returned to baseline with a characteristic time course (control; n = 15): within the first 10 s, it rose rapidly to 70% of baseline (response 1), thus already comprising 40% of the total RVR response. Thereafter, it increased at a much slower rate until it started to rise rapidly again at 20-30 s after the pressure step (response 2). After passing an overshoot of 117% at 43 s, RVR returned to baseline values. Similar responses were observed after RAP reduction for 5 min or after complete occlusions for 60 s. When tubuloglomerular feedback (TGF) was inhibited by furosemide (40 mg i.v., n = 12), response 1 was enhanced, providing 60% of the total response, whereas response 2 was completely abolished. Instead, RVR slowly rose to reach the baseline at 60 s (response 3). The same pattern was observed when furosemide was given at a much higher dose (>600 mg i.v.; n = 6) or in combination with clamping of the plasma levels of nitric oxide (n = 6). In contrast to RVR, vascular resistance in the external iliac artery after a 60-s complete occlusion started to rise with a delay of 4 s and returned to baseline within 30 s. It is concluded that, in addition to the myogenic response and the TGF, a third regulatory mechanism significantly contributes to RBF autoregulation, independently of nitric oxide. The three mechanisms contribute about equally to resting RVR. The myogenic response is faster in the kidney than in the hindlimb.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal blood flow and dynamic autoregulation in conscious mice.

Autoregulation of renal blood flow (RBF) occurs via myogenic and tubuloglomerular feedback (TGF) mechanisms that are engaged by pressure changes within preglomerular arteries and by tubular flow and content, respectively. Our understanding of autoregulatory function in the kidney largely stems from experiments in anesthetized animals where renal perfusion pressure is precisely controlled. Howev...

متن کامل

Spontaneous renal blood flow autoregulation curves in conscious sinoaortic baroreceptor-denervated rats.

These experiments examined whether the conscious sinoaortic baroreceptor-denervated (SAD) rat, owing to its high spontaneous arterial pressure (AP) variability, might represent a model for renal blood flow (RBF) autoregulation studies. In eight SAD and six baroreceptor-intact rats, AP and RBF were recorded (1-h periods) before and after furosemide (10 mg/kg followed by 10 mg. kg(-1). h(-1) iv) ...

متن کامل

Autoregulation of Blood Flow: Vessel Diameter Changes in Response to Different Temperatures

Background: Autoregulation of blood flow is a marvelous phenomenon balanc- ing blood supply and tissue demand. Although many chemically-based explanations for this phenomenon have been proposed and some of them are commonly used today, biomechanical aspects of this phenomenon was neglected. The biomechanical aspect provides insights to us to model vessel diameter changes more precisely and comp...

متن کامل

Patterns in autoregulation of renal blood flow in the dog.

KOTHE, CARL F., FRANKLIN D. NASH, AND DAVID E. THOMPSON. Patterns in autoregulation of renal blood flow in the dog. Am. J. I'hysiol. 220(6): 1621-1626. 197 1 .-Experiments were designed to provide data to support or refute mathematical models of the autoregulation of renal blood flow. Renal arterial inflow increased only 0.0107 & 0.0068 (SE) ml/set per mm Hg increase in arterial pressure over t...

متن کامل

Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs.

We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven times over 8 wk in the same dog. Angiotensin II decreased TRBF (350 +/- 16 to 299 +/- 15 ml/min), an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 280 6  شماره 

صفحات  -

تاریخ انتشار 2001